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Artificial neural network techniques show an excellent ability to predict the data (output) for various com-

plex characteristics (input). It is primarily specialized to solve nonlinear relationship problems. This study

is an experimental investigation that applies artificial neural network techniques and an experimental

design to predict the cyclic polarization curves of the super-austenitic stainless steel AL-6XN alloy with

sensitization. A cyclic polarization test was conducted in a 3.5% NaCl solution based on an experimental

design matrix with various factors (degree of sensitization, temperature, pH) and their levels, and a total of

36 cyclic polarization data were acquired. The 36 cyclic polarization patterns were used as training data for

the artificial neural network model. As a result, the supervised learning algorithms with back-propagation

showed high learning and prediction performances. The model showed an excellent training performance

(R2=0.998) and a considerable prediction performance (R2=0.812) for the conditions that were not included

in the training data.
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1. Introduction

The super austenitic stainless steel (SASS) is applied to

various industrial fields owing to excellent corrosion resistance,

mechanical properties and weldability in a severely corrosive

environment. However, it can be vulnerable to corrosion such

as pitting, crevice corrosion, intergranular corrosion (IGC),

and stress corrosion cracking. 

The localized corrosion is sensitive to environmental para-

meters such as chloride ion, temperature and pH [1,2]. Fur-

thermore, when exposed to the temperature range of 500-

850 oC, SASS is sensitized due to the secondary phase pre-

cipitation at grain boundaries [3,4]. 

Predicting the corrosion properties is the essential step for

controlling corrosion in the use environment. However, it is

difficult to analyze and predict the factors because each factor

is involved in the growth through complex interactions among

various environmental parameters, including degree of sensiti-

zation (DOS). Moreover, the cyclic potentiodynamic polari-

zation (CPDP) test of the electrochemical method for assessing

the localized corrosion properties of stainless steel is nonlinear

and represents highly complex relationships between variables

and reaction values. The machine learning (ML) technique

can be applied to the data analysis of such unspecified and

complex relationships.

Currently, ML is drawing attention in various industries and

scientific studies, and its performance is being proven in a

variety of applications. Among the ML techniques, an artificial

neural network (ANN) is a statistical learning algorithm inspired

by the biological neural networks (especially the brain of

animals’ central nervous system) in cognitive science. ANN

shows excellent performance in the prediction (output) for

various complex characteristic data (input). It is primarily

specialized in solving nonlinear relationship problems.

Since the factors of the localized property of stainless steel

show complex interactions, it is highly likely that the factors

and response characteristic values would not show a linear

relationship. Therefore, it is expected that using the high

performance of ANN in nonlinear problem solving can be

used to achieve high performance in predicting the polarization

curve of stainless steel. Moreover, this performance has been

proven in preliminary studies [5,6].

This study aims to generate an ANN prediction model
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with the environmental parameters (temperature, pH) for the

pitting corrosion behavior of AL-6XN with DOS. The predi-

ction model was generated using the ANN technique of

supervised learning. The experiment was conducted in a 3.5%

NaCl solution according to the experimental matrix with

various levels of each factor for training data. A total of 36

CPDP curves were obtained and used as training data.

Finally, the prediction model was validated under random

test conditions not included in the training data.

2. Experimental Methods

2.1 Material and tensile tests

The chemical composition of the SASS AL-6XN is 0.02

wt% C, 0.27 wt% Si, 0.56 wt%  Mn, 0.03 wt%  P, 0.01 wt%

S, 20.2 wt%  Cr, 6.83 wt%  Mo, 24.8 wt%. Ni, 0.61 wt%

Cu, and Fe for the rest. For sensitization, heat-treatment was

performed for up to 12 hours in an electric heat furnace

elevated to 800 oC, and the completed specimens were

quenched in fresh water at room temperature. Each plate

was cut into small specimens with 10 mm × 10 mm × 5 mm,

and the surface was polished to remove scales formed by

the heat-treatment.

2.2 Assessment of DOS

The DOS was assessed using the double loop electro-

chemical reactivation (DL-EPR) test with a three-electrode

corrosion cell composed of a working, counter, and reference

electrodes, and VSP potentiostat (Biologic). For the counter

and reference electrodes, a platinum mesh with 20 mm ×

20 mm and Ag/AgCl (sat. by KCl) were used. The surface of

the heat-treatment specimen of the working electrode was

polished up to #2000 of SiC paper, and finally polished using

1 µm alumina powder. Then ultrasonic cleaning was performed

to remove foreign substances and oil in ethanol and distilled

water. The working electrode exposed a reaction area of

1 cm2 using a self-made holder. The test medium was a 2M

H
2
SO

4
 + 0.01M KSCN + 2M NaCl solution at 30 oC. The

open circuit potential(OCP) was measured after immersion

in the test solution for 30 min. Polarization was performed

from OCP to +300 mV. Thereafter, it was performed in the

reverse direction until the OCP. The scan rate was the same

at 1.667 mV/s. Each experiment was performed three times to

obtain reproducibility of the electrochemical measurements.

The DOS from the DL-EPR curve was calculated using

equation (1):

DOS=(I
a
/I
r
) × 100 (1)

where I
a
 is the current density peak of the activation section,

and I
r
 is the current density peak of the reactivation section.

This study did not present a polarization curve for the DL-

EPR test.

2.3 CPDP test

The DOS, temperature, and pH were designed to levels

4, 3, and 3. The details are presented in Table 1. The CPDP

test used a three-electrode corrosion cell under the 3.5 %

NaCl solution at 25 oC. The OCP was measured after

immersing the specimen in each test solution for 30 min.

Polarization was performed from the OCP of -0.25 V and

once the current density reached 5 mA/cm2, it was performed

in a reverse direction to the OCP. The scan rate in the

polarization is the same at 0.5 mV/s. Each experimental

condition was presented to the matrix in Table 2, and a total

of 36 cyclic polarization curve data were obtained.

2.4 Artificial neural network

The CPDP curve represents the current density (log i)

values according to the change of potential (E). In short, the

prediction target is to predict the current density at the

potential change in a given environmental variable. As

shown in Fig. 1, the artificial neural network model is the

back-propagation algorithm of multiple layer perceptron

(MLP), which consists of an input layer with four nodes, a

double-hidden layer, and output layer. The hyperbolic

tangent (tanh) was applied to the activation function for each

Fig. 1. Schematic diagram for ANN architecture used for
modeling polarization curves
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hidden layer. The ratios of training, validation, and test data

used in the neural network are 80%, 10%, and 10%, and the

data were selected randomly in model training. The Python

3.7 and Tensorflow 2.0 libraries were used for the design

and operation of the neural network. The mean squared error

(MSE) of equation (2) was used as the cost function.

(2)

where n is the number of output for the training set, X(t) is

the actual value, and  is the prediction value. For

optimization of the cost function, the Adam (Adaptive

Moment Estimation) algorithm was used.

3. Results and Discussion

3.1 Microstructure

Fig. 2 shows a scanning electron microscope(SEM) image

for microstructure of AL-6XN with heat-treatment time. The

nano-sized σ phase precipitated at the grain boundary grows

continuously by consuming the surrounding Cr and Mo. As

a result, Cr and Mo depleted-zone are formed around it, and

the metal becomes highly sensitive to IGC. In Fig. 2a, the

base metal was consists of γ phase austenite structure. On

the other hand, a needle-shaped secondary phase was

precipitated at the grain boundary, and the size and number

tended to increase with time, as Fig. 2b,c. Fig. 2d shows

SEM and energy-dispersive X-ray spectroscopy (EDX)

analysis results for secondary phase powder that was

electronically extracted from the specimen heat-treated at

800 oC. Mo and Cr increased compared to the new austenite

base, but Ni and Fe decreased. In particular, Mo was abundant

at 23.5 wt%  compared to the austenite base (6.83 wt%). 

3.2 Quantification of DOS

The temperature and pH are quantified input variables

provided for the ANN model. By contrast, DOS is an

experimental value obtained from an engineering experiment,

and as such, deviations may occur in the result values

obtained from repetitive experiments under the same

conditions. For efficient training of the ANN model,

quantified DOS values are required. To quantify the DOS,

it was fitted by the logistic function of equation 3, and the

results are shown in Fig. 3.

(3)

where A
1
 is the initial value, A

2
 is the final value, X

o
 is the

mean value, and p is the constant for power function. The

Levenberg-Marquardt algorithm was used for the

optimization of the regression line [7]. The logistic function

was found to be the most suitable function that can express

the incubation, increment, and stagnation periods that appear

in the metal’s sensitization phenomenon. The coefficient of

determination (R2) for the regression curve is 0.9878. To

validate the regression curve, a validation experiment was

conducted for a specimen degraded for 4 hours, which is not

included in the training data. The experimental and predicted

values respectively were 42.08 and 39.98, and satisfied the
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Fig. 2. The microstructure of AL-6XN alloy heat-treated
at 800 oC: (a) as-received, (b) 3 hours, (c) 12 hours, (d)
electronically extracted secondary phase from Fig. 2(c) Fig. 3. Fitted curve for DOS value
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95% confidence interval. The sensitization degree calculated

through the fitting curve is shown in Table 1.

3.3 ANN model

Determining the appropriate numbers of hidden layers and

neurons is the most important element for creating an ANN

model with excellent performance. No methodology for

optimizing the numbers of hidden layers and neurons has been

developed until now. The ANN model must be optimized

through repetitive trials and errors [8]. Basically, the back-

propagated ANN model is composed of an input layer, an output

layer, and one or more hidden layers connected to the neuron

processor. It has been proven through various studies that a

single hidden layer is sufficient for learning a continuous

function [9]. However, to learn a pattern with discontinuities

such as the CPDP curve requires two or more hidden layers [10].

The number of neurons of the hidden layer can vary by the

data pattern and format, and the number of input layers.

Lachtermacher and Fuller [11] proposed a methodology for

determining the number of neurons of the hidden layer as

the following equation (4):

(4)

where I is the number of input neurons, and P is the number

of training patterns. The neuron number based on Equation

(4) ranges from 24 to 72. In this study, the ANN performance

was assessed in various structures by expanding the range

of the neurons number from 10 to 100. Table 3 shows the

performance of the ANN model with the number of neurons

of the double hidden layer to which the S-shaped hyperbolic

activation function was applied. The performance was

assessed using the MSE of equation (2) and the R2. As shown

in Table 3, the MSE and the R2 tended to improve with the

increasing number of neurons. With 70 neurons, the MSE and

the R2 improved to 0.0024 and 0.999, respectively. However,

with more than 70 neurons, no performance improvement was

observed. A wider and deeper structure of the ANN shows a

higher performance, but the computation time and cost increase.

Furthermore, the prediction performance may be degraded due

0.11P NHN I 1+( ) 0.3P≤ ≤

Table 1. Designed factors and their levels

Factors Unit
Level

1 2 3 4

Heat-treatment time (DOS): A hours 0(1) 1(3) 3(28) 6(53)

Temperature: B oC 25 50 75 -

pH: C 2 4 6 -

Table 2. Experiment design matrix for CPDP tests in 3.5% NaCl solution

Input parameter

Row DOS Temp., oC pH Row DOS Temp., oC pH

1 0 25 2 17 3 75 4

2 0 25 4 18 3 75 6

3 0 25 6 19 22 25 2

4 0 50 2 20 22 25 4

5 0 50 4 21 22 25 6

6 0 50 6 22 22 50 2

7 0 75 2 23 22 50 4

8 0 75 4 24 22 50 6

9 0 75 6 25 22 75 2

10 3 25 2 26 22 75 4

11 3 25 4 27 22 75 6

12 3 25 6 28 53 25 2

13 3 50 2 29 53 25 4

14 3 50 4 30 53 25 6

15 3 50 6 31 53 50 2

16 3 75 2 32 53 50 4
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to over-fitting for the training data. Therefore, in this study,

we used 4-70-70-1 as the optimal structure.

3.4 Validation of ANN model

Fig. 4 compares the actual curve and the prediction curve

for some test conditions in the ANN learning data. The curve

patterns matched well, and the OCP and pitting potentials

were also highly similar. This result proved that the ANN

model can predict the CPDP curve with each environmental

parameter. 

Fig. 5 shows the correlations between the actual values and

the predicted values of the ANN model. Most data points are

close to the best regression line (Y=T) with the R2 of 1, and

showed a very high correlation. The R2 for the training,

validation and test sets were very high at 0.99 at the minimum.

Fig. 6 compares the actual curves and prediction curves

for new conditions not included in the ANN model. The

patterns of the curves did not perfectly match. However, the

overall pattern and electrochemical characteristic values

were highly similar, and the R2 for the curves in Fig. 6a-d

is 0.812. Although this is lower than the R2 of 0.998 for the

training data, it is believed that an acceptable level of

prediction performance was obtained considering the unique

corrosion characteristics of stainless steel and the flexibility,

complexity, and reproducibility of engineering experiments.

Table 3. Comparison of performance of ANN structure
with hidden neurons number ranging from 10 to 100 

Architecture
Training Validation

MSE R2 MSE R2

4-10-10-1 0.0827 0.939 0.0937 0.937

4-20-20-1 0.017 0.989 0.013 0.989

4-30-30-1 0.0097 0.992 0.0105 0.992

4-40-40-1 0.0037 0.994 0.0077 0.993

4-50-50-1 0.0029 0.998 0.0021 0.998

4-60-60-1 0.0034 0.996 0.0043 0.996

4-70-70-1 0.0024 0.999 0.0055 0.999

4-80-80-1 0.0064 0.993 0.0061 0.992

4-90-90-1 0.0036 0.999 0.0052 0.999

4-100-100-1 0.0023 0.996 0.0041 0.996

Fig. 4. Experimental and ANN predicted polarization curves for some train data. These conditions included in Table 2
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Fig. 5. Diagram of actual values vs. predicted values for log(i): (a) training data set: 34,184 plots, (b)  validation data set:
3,799 plots, (c) test data set: 4,279 plots, (d) total data set: 42,781 plots

Fig. 6. Experimental and ANN predicted polarization curves. These conditions not included in Table 2
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4. Conclusions

This study applied the ANN technique of supervised

learning with temperature and pH variations of sensitized

AL-6XN in a 3.5% NaCl solution. The supervised learning

ANN of back-propagation showed high learning and

prediction performances. It showed a very high learning

performance (R2=0.998) for CPDP curves in forward and

reverse directions, and acceptable performance (R2=0.812)

was obtained for validation data not included in the training

data as well. The ANN model can be highly effective for

prediction for corrosion characteristics of complex relationships

with input parameters. The prediction performance of the ANN

model could be improved further by training with additional

data that includes more factors and levels.
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